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Summary. The shifted multiplicative model (SHMM) is 
used in an exploratory step-down method for identify- 
ing subsets of environments in which genotypic effects 
are "separable" from environmental  effects. Subsets of 
environments are chosen on the basis of a S H M M  anal- 
ysis of the entire data set. S H M M  analyses of the subsets 
may indicate a need for further subdivision and/or sug- 
gest that  a different subdivision at the previous stage 
should be tried. The process continues until S H M M  
analysis indicates that  a S H M M  with only one multi- 
plicative term and its "point of concurrence" outside (left 
or right) of the cluster of data points adequately fits the 
data in all subsets. The method is first illustrated with a 
simple example using a small data set from the statistical 
literature. Then results obtained in an international maize 
(Zea mays L.) yield trial with 20 sites and nine cultivars 
is presented and discussed. 

Key words: Genotype x environment interaction - Shift- 
ed multiplicative model - Separability - Concurrent  re- 
gression model - Crossover interaction - Qualitative in- 
teraction 

Introduction 

The concept of "separability" of genotypic and environ- 
mental  effects in crop cultivar trials repeated over a series 
of environments (e.g., locations and/or years) was devel- 
oped by Gregorius and N a m k o o n g  (1986). One possible 
"operator"  which they proposed for mapping of a set of 
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genotypic and environmental  effects onto a set of pheno- 
typic response values (formally denoted ~:  C~ x C~ -~ F) 
is the multiplicative operator  a(y) b(e)+ c where a(7) and 
b (e) are functions of genotypic effects and environmental  
effects, respectively, and c is a constant. This operator  is 
a special case (in that it has only one multiplicative term) 
of the shifted multiplicative model (SHMM) for which we 
have developed some statistical and computat ional  pro- 
cedures in previous papers (Seyedsadr and Cornelius 
1991 b, c). We write S H M M  with t multiplicative terms 
(SHMM t, say) in the form 

t 

Yij = fl -~ ~ 2k ~ik ~jk -~- eij (1) 
k = l  

where fl is the "shift parameter",  ~il and 7j~ are "pr imary 
effects" of ith environment and jth cultivar, respectively, 
c~i2 and 7ja are their "secondary effects", cq3 and 7i3 their 
"tertiary effects", etc. The e~j quantities are random errors, 
which we shall suppose to be N I D  (0, a2). The quantities 
2 k (21 > 22_> - .- >_ 2~ > 0) are scaling constants that 
allow us to impose the or thonormali ty  constraints, Z~ e~k 
=z~j?2k:--I and ZiOClkO~ik,=Zj~jkTdk,:-O for k:t:k'. If 
t = 1, the right-hand side of (1), apart  from the el; term, is 
Gregorius and Namkoong ' s  multiplicative operator  if we 
put c = fi and, for the ith environment and jth genotype, 
a(7) = 2~' 7j1 and b(e) = 2~ c~il where w + x = l .  

If S H M M  1 (apart from the eij term) is plotted against 
either the geontypic pr imary effect (7il values) or the envi- 
ronmental  pr imary effects (~il values), the resulting graph 
has the configuration which Mandel  (1961) has character- 
ized as "concurrent" regression lines, so-called because 
the regression lines all intersect at one point (the "point 
of concurrence"). If the phenotypic values are located 
entirely to the left or to the right of the point of con- 
currence when plotted against environmental  pr imary 
effects, then genotypic effects are "separable from envi- 
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Fig. 1 A-D. Four hypothetical SHMM 1 response patterns: A complete separability; B genotypic effects separable from environmental 
effects; C environmental effects separable from genotypic effects; D genotypic and environmental effects inseparable 

ronmental effects" by the Gregorius and Namkoong defi- 
nition. If such a configuration is obtained when pheno- 
typic values are plotted against genotypic primary effects, 
then environmental effects are "separable from genotypic 
effects". Figure 1 displays four hypothetical cases. In 
Case A there is complete separability. Cases B and C each 
show one type of separability, but not the other. Neither 

type of separability is found in Case D. Note  that Case A, 
complete separability, can also have a graphical configu- 
ration with the projected point of concurrence to the 
upper-right of the graphs rather than to the lower-left. 
Graphs displaying separability in Cases B and C can also 
be such that the point of concurrence is to the right rather 
than to the left of the graph. 
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We will be par t icu lar ly  interes ted in Cases A and  B as 

these are response  pa t te rns  in which there are no geno-  

typic r ank-change  in teract ion,  and  if the yield tr ial  da ta  

do no t  fit such a pat tern,  then  we will search for subsets 

of  env i ronmen t s  in which such a response  pa t t e rn  is ob-  

tained. This  will requi re  tha t  S H M M t  give a sat isfactory 

fit to the da t a  and  that  the es t imated  p r imary  effects of  

env i ronmen t s  are all of  the same sign. O n  the p lo t  of 

regress ion lines for genotypes  against  env i ronmen ta l  pri- 

m a r y  effects, the po in t  of  concur rence  is to the left of  the 

g raph  if the env i ronmen ta l  effects are all posit ive,  bu t  to 

the r ight  if they are all negative.  Since the p roduc t s  c~  7j~ 

are invar ian t  under  a s imul taneous  sign change,  the 

po lar i ty  of  the hor izon ta l  axes on the graphs  is a rb i t ra ry  

apar t  f rom s imul taneous  reversal  in each ma tch ing  pair  

of  graphs.  We shall  adop t  the conven t ion  that  the polar i ty  

will be chosen such tha t  env i ronmen ta l  p r imary  effects 

are posi t ively  cor re la ted  with  the env i ronmen ta l  means,  

37~.. N o t e  that  this will m a k e  it imposs ib le  for the po in t  of  

concur rence  to be loca ted  ei ther  to the upper- lef t  or  the 

lower- r ight  of  the graph.  

F o r  brevity,  we will shor ten  expressions such as "sep- 

arabi l i ty  of genotypic  effects f rom env i ronmen ta l  effects" 

to s imply "separabi l i ty  of  genotypic  effects" or  "geno typ ic  

separabi l i ty".  

Theory of SHMM 

Seyedsadr and Cornelius (1991 c) derived the least squares esti- 
mate of the shift parameter fl as 

k - 1  

r c 

where ~k = r-1 5Z C~k and ~k = C-1 • ~jk; r and c are the row 
i = l  j = l  

and column dimensions of the two-way table of data. A well- 
known result in matrix algebra is that any matrix Z can be 
expressed as Z=Azi(~ ' ,  where / i  is a diagonal matrix with pos- 
itive numbers, ~k, on the diagonal, and .4 and (~ are such that 
J ' , i  = ~ '  d = I m where m = rank (Z). Denoting the k t~ column of/]  
and G, respectively, by ~k and ~k, matrix Z can be expressed 

m 

as Z = / ] / i  d '  = 52 /~k ~k '2~ and an individual element of Z as 
m k = l  

zij = 2 ,t~ ~ik 5k" The quantities )~k, ~ik, 5k for k = 1 . . . . .  t are 
k = l  

the least squares estimates of our model parameters 2k, cq~ and 
7j~ if we define z~j=y~j-l~ and the terms in 3"~k~ik~jk are 

k 

arranged in decreasing order with respect to the ~k values. In 
matrix algebra, the decomposition Z=.~AG'  is known as the 
"singular value decomposition" (SVD) of Z. The f'k are known as 
"singular values" and the vectors i k anf ~k as "left singular vec- 
tors" and "right singular vectors", respectively. Briefly stated, we 
say that the least squares estimates of the 2k, Chk and 7j~ for 
k = 1 . . . .  , t are given by the "first t components" of the SVD of 
Z =  Y - f l J  where J is a r x c matrix of ones. Since Z depends on 
fl, and fl depends on the SVD of Z, the least squares fitting of 
SHMM requires an iterative algorithm. Changing the number of 
multiplicative terms changes fl and, consequently, changes the 
estimates of all 2k, Chk and 7jk. Computational algorithms are 
described by Cornelius and Seyedsadr (1991 c), and it is expected 

that the first author's Fortran program, EIGAOV, can be made 
available in the near future. 

By computer simulation, Seyedsadr (1987) estimated the ex- 
pected values and sampling standard deviations of the sum of 
squares owing to the sequential addition of multiplicative terms 
to the model when the data are two-way tables of standard 
normal deviates with row and column dimensions (r x c) ranging 
from 3 x 2 up to 99 x 19. These results are analogous to results 
obtained by Mandel (1971) for models in which the estimates of 
the linear terms in the model do not depend on estimates of the 
multiplicative terms. [The additive main effects and multiplica- 
tive interaction (AMMI) model (Gauch 1988; Gauch and Zobel 
1988) is one such model.] Results for the first three multiplicative 
terms were reported by Seyedsadr and Cornelius (1991 c) and 
functions which approximate these results for the first five terms 
as functions of r and c were obtained by Seyedsadr and Cor- 
nelius (1991 a) using regression techniques. It is suggested that 
sequential sums of squares (S k, say, for the k th multiplicative 
term) be presented in an analysis of variance (anova) format 
using the computer simulation results for the expectations, or the 
functions which approximate these results, as the degrees of 
freedom (df) for the purpose of computing mean squares. 

Test of statistical significance 

Since we will be concerned with the number of multiplicative 
terms necessary to describe the variation in a particular data set 
and also whether SHMM 1 will be considered an adequate model 
for a given subset of environments, we will now describe some 
statistical tests which can be used to address these questions. 

Since the S k are not independent and are not distributed as 
chi-square random variables, the usual linear model theory lead- 
ing to F-statistics for inference purposes does not hold. For the case 
where no estimate of cr z independent of the cell means is avail- 

able, Seyedsadr and Cornelius (1991 b) obtained A t = S t / ~  Sk, 
k = t  

where p = min ( r - i ,  c), provided c N r (if c > r, interchange r and 
c), as an appropriate statistic for judging the statistical signifi- 
cance of the t th multiplicative term. This leads to sequential 
statistical tests that may be used to determine how many multi- 
plicative terms the model actually should contain. Critical values 
of A t were obtained from the aforementioned simulation study 
for two-way tables with dimensions up to 99 x 19. Moreover, 
a method of moments approximation of the distribution of 
[ ( p - t +  1)A t -  1] / (p- t )  by a Beta distribution was described, 
and values of Beta parameters, a~ and bt, were tabulated. Given 
the Beta parameters, approximate probabilities for the sequen- 
tial tests may be computed using any software that will compute 
the incomplete Beta function. We refer to this test as the Seyed- 
sadr-Cornelius (SC) test. 

Goodman and Haberman (1990) proved that the residual 
sum of squares in an AMMI model with t multiplicative terms 
is asymptotically distributed as cr 2 Z~ where v = (r - t -  1) (c - t -  1) 
as the 2 k become large {more precisely, as min [('q'k--2k + 1), k=  
1 . . . . .  t]/a ~o~, such that 21/2 t remains finite}. This implies that 
Mandel's (1971) allocation ofdf  to the S~ for AMMI models are 
an overallocation for multiplicative terms that are clearly non- 
null. This may have only a small effect on the distribution of the 
ratio A t. However, Marasinghe (1985) and Schott (1986) proved 
that the asymptotic distribution of A r, under the hypothesis/4o: 
2 t = 0, as 2k/a ~ o0 for k = 1 . . . . .  t--1 is the same as that of A 1 
in a smaller problem, namely, with r - t  + 1 rows and c - t  + 1 
columns, for which Johnson and Graybill (1972) have described 
a method for determining statistical significance. This theoretical 
result from Marasinghe and Schott also follows from Goodman 
and Haberman's asymptotic expression for the residuals. 
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It seems clear from the Goodman and Haberman result that 
the asymptotic distribution of the residual sum of squares in 
SHMM t as the "~k for k = 1 . . . . .  t become large will be a 2 )~ where 
v = ( r - t ) ( c - t ) - 1  provided that we introduce one additional 

t 

constraint, namely, that ~2 2k ~k ~7~ remains finite. The further 
k = l  

constraint is necessary to prevent fl from approaching _+ o% a 
consequence of which would be SHMM t approaching AMMI t_ 1 
(Seyedsadr and Cornelius 1991 c). The implication for the d f t o  
be assigned to the S k is similar to the case of AMMI, but an 
analogous result for the asymptotic distribution of A r under 
Ho: )~ t=0  obtained for AMMI by Marasinghe (1985) and 
Schott (1986) is not so easily proved for SHMM, if indeed it 
holds at all. (The difficulty here is that whereas the t-term model 
residuals are a function only of the ( t - l ) - t e rm  residuals for 
AMMI models, this is not true for SHMM). Nevertheless, until 
a more exact result is available, we believe that a good approx- 
imate asymptotic test can be done by comparing A t to the distri- 
bution of A1 in a problem with r - t + l  rows and c - t + l  
columns using the SC Beta approximation. We will refer to this 
test as the Seyedsadr-Cornelius/Schott-Marasinghe (SC/SM) 
test. Except for the first multiplicative term where the two tests 
are identical, the SC/SM tests are generally more conservative 
than the SC tests. The Goodman-Haberman, Schott and Mara- 
singhe theorems suggest that the SC tests for terms other that 
the first are likely to be somewhat liberal. Simulation results of 
Marasinghe and Schott indicate that the asymptotic tests for 
multiplicative terms in AMMI will be somewhat conservative 
except when the true 2 k values for the earlier terms are very large. 
It is reasonable to suppose that the same will be true for SHMM. 
Thus, we may surmise that the correct P value for A t is some- 
thing intermediate between the values obtained by SC and SC/ 
SM tests. 

If an estimate of within-cell error is available, then test crite- 
ria which use this estimate may be devised. Suppose y,j in model 
(1) is a cell mean of n replicates. Then the variance of eij is 
a 2 = aZ/n where @ is the "plot error", i.e., within-cell error on an 
individual plot basis. Let #1 =E(gt/G2) a n d / ~  = V(St/G2), Fur- 
ther, let s 2 and f denote the estimate of @ and its dr, respectively. 
The following are two F approximations which may be used as 
approximate tests of the significance of the t th multiplicative 
term. 

t) Let ql = / z ~ + # ~ + ( f - 4 ) # l ,  q z = ( f  - 2 )  #~ +2#~,  b = %  #~/q2, 
a = 1 + ( f -  2) ql/q2. Then 

nSt /b  
F 1 - fsZ/a 

is approximately distributed as F with 2b and 2a df. 
2) F 2 = nS,/l~l s z is approximately distributed as F with f l  and 

f d f  wheref 1 =2#2//~i.  

Both of these F approximations are obtained indirectly. The 
first uses the fact that if a X/b  is distributed as F with 2 b and 
2 a d f  then X + 1 has the same distribution as t /B  where B is a 
Beta random variable with parameters a and b. The values for 
a and b follow from putting X = n S J f s  2 and putting the first and 
second moments of X + 1 equal to the corresponding moments 
of lIB. This method is previously unpublished, but is one which 
the first author has used for many years for testing statistical 
significance of multiplicative terms in AMMI models. The sec- 
ond F approximation employs essentially the same device as was 
used by Johnson (1976) to derive a critical value for a simulta- 
neous test procedure for interaction contrasts. Specifically, we 
find u and f l  such that uS t /a  2 is approximately (by the method 
of moments) distributed as chi-square with f l  df. Our software 
computes only F t since it was in use prior to Johnson (1976), and 

subsequent investigation (Cornelius, unpublished) has suggest- 
ed that the F 1 and F z tests will control Type I error rates for 
AMMI models about equally well. Moreover, the F 1 and F 2 test 
are asymptotically equivalent as f ~  co. Boik (1985) studied the 
accuracy of the F 2 approximation for computing probabilities 
for testing the significance of the first multiplicative term in 
AMMI models and concluded that it was accurate enough for 
most applications. It is reasonable to expect this also to be true 
for SHMM. In applying the tests, #1 is put equal to the expecta- 
tion and #~ to the square of the standard deviation of S t obtained 
in the simulation study of Seyedsadr and Cornelius (1991 c) (or 
Mandel 1971, if one is testing AMMI components). Here again, 
one may invoke our previous reasoning based on theorems of 
Goodman and Haberman (1990). If so, then #1 and p~ are ob- 
tained using the expectation and standard deviation of $1 in a 
problem of reduced dimension, namely, r - t +  1 rows and 
c - t + t  columns. We will denote F 1 and F 2 with #1 and #~ so 
obtained as F6m and F G H  2 . 

The asymptotic chi-squaredness of the SHMM residual sum 
of squares among cells allows us to (conservatively) test this 
residual against s z by a conventional F test with f z = ( r - t ) ( c - O - 1  
and f d f  The F statistic for this is 

= 

Significance of the F R test implies that the t-term model is an 
inadequate model, but this test does not have high power for 
detecting the need for another multiplicative term. 

A simple example 

A whea t  (Tri t icum aest ivum L.) yield da t a  set wi th  four  

cul t ivars  in 13 locat ions  previous ly  analyzed  by Snee 

(1982) (and several o ther  au thors  cited by Snee) provides  

a s imple i l lus t ra t ion of  the use of  S H M M  to identify 

subsets of  env i ronmen t s  in which genotypic  effects are 

separable.  The  data,  expressed as bushels  per  acre by 

previous  authors ,  have been conver ted  to g m -2  (Table 1) 

r ounded  to the nearest  integer.  As was done  by Snee, we 

have  a r ranged  the cul t ivars  and locat ions  in rank  order,  

each with respect  to their  means  over  levels of  the o ther  

factor. The  S H M M  a n o v a  (Table 2) indicates  that  two 

mul t ip l ica t ive  terms are requi red  in o rder  for S H M M  to 

adequa te ly  describe these data.  

In  p lo t t ing  the fit ted S H M M  2 mode l  (Fig. 2), we 

show the shift pa rame te r  plus p r imary  effects as a set of 

concur ren t  regress ion lines and  the S H M M z - e s t i m a t e d  

yields as a scat ter  of points  a round  these regress ion lines. 

The  raw means  are no t  shown.  The  entire da t a  set lacks 

genotypic  separabil i ty,  as the po in t  of concur rence  occurs  

wi thin  the scat ter  of  da ta  and b roken  line graphs  connect -  

ing the S H M M  a es t imated  yields for each cul t ivar  will 

cross over  at several  points.  This  will a lmos t  always be 

t rue when  secondary  effects are significant. However ,  it is 

possible to have  significant secondary  effects and  yet have  

genotypic  separabil i ty.  Such a s i tua t ion  wou ld  imply  that  
the app rop r i a t e  ope ra to r  is no t  the mul t ip l ica t ive  opera-  

tor. 



Table 1. Yields (gm 2) of four wheat cultivars tested in 13 
locations and SHMM 2 parameter estimates 

Loca- Estimated effects 
Cultivar 

tion (SHMM 2) 

1 4 2 3 Mean Primary Secondary 
( ~ )  ( ~ )  

7 371 269 261 142 261 0.493 -0.065 
13 277 296 219 197 247 0 . 3 9 3  -0.563 
8 372 169 230 125 224 0.415 0.381 

10 311 197 2J2 151 218 0.359 0.042 
5 304 202 197 136 210 0.342 0.040 
t 293 131 162 131 179 0.268 0.307 
2 272 160 146 112 172 0.248 0.182 
6 174 182 172 157 171 0.178 -0.270 
9 133 151 146 157 147 0 . 1 0 0  -0.254 
4 132 123 125 120 125 0 . 0 6 2  -0.051 

t l  100 152 105 133 122 0 . 0 3 5  -0.287 
3 122 108 95 112 109 0.024 -0.004 

12 51 149 32 138 92 -0.061 -0.424 

Mean 224 176 162 139 175 0 . 2 2 0  -0.074 

Estimated effects (SHMM2) 

Primary (7jl) 0.794 0 .411  0 .415  0.169 ~ = 102.0 
Secondary (7~2) 0.471 -0.743 0.027 -0.474 21=720.5 

2z=183.7 

Table 2. SHMM anova of the wheat data 

Source of df " Sum of Mean P value b 
variation squares square 

SC test SC/SM 

Primary effects 23.74 244 895 10 313 <0.0001 <0.0001 
Secondary effects 14.61 29 124 I 994 0.0007 0.0036 
Tertiary effects 8.57 7 103 829 0 .0592 0.0976 
Remainder 4.08 t 476 362 - - 
SHMMzresiduals 12.65 8 579 678 - 

a df are computed by formulas developed by Seyedsadr and 
Cornelius (1991 a) to approximate the expectations of the SS 
when the data are standard normal deviates 
b For description of the SC and SC/SM tests, see text 

Search for subsets with genotypic separability 

For this example, we do not  have an estimate of within- 
cell error available, so the SC and SC/SM tests are the 
only significance tests among those we have described 
which are available to use in our search for subsets of 

locations that have genotypic separability. In  addition to 
these tests, however, we recommend also observing the 
magnitude of anova mean squares owing to secondary, 
tertiary . . . . .  etc., effects, as well as the S H M M  1 residual 
mean squares (i.e., secondary, tertiary, etc., pooled) ob- 
tained in analyses of subsets as compared to the residual 
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Fig, 2. SHMM 2 fitted to the wheat yield data. Plotted points are 
the SHMM 2 estimated yields. Straight lines show shift parame- 
ter plus SHMM z estimates of primary effects 

mean square of s~ = 678 (Table 2) obtained when the 
chosen parsimonious model (SHMM 2 in our example) 

was fitted to the entire data set. What we would like to see 
is that such mean squares are as small as 678, or at least 
not much greater; else it implies that the subsetting is 
giving us estimated yields, the fit to the data of which is 

actually worse than the overall model, SHMM 2 in our 
case, which was deemed necessary to describe the entire 

data set. To put it another way, the variation captured by 
secondary effects in the overall model should be success- 
fully recovered as primary effects in subsets and the differ- 
ing patterns in those primary effects from one subset to 
another. We would like to be more precise concerning the 
comparison of mean squares from SHMM anovas of 
subsets to the residual mean square from the S H M M  
anova of the entire data set, but critical values for such 
comparisons are an unsolved mathematical problem. 

The SHMM 2 secondary effects (c~i2) of locations are 
included in Table I. It is reasonable to expect that those 
which are near zero would form a subset for which 

SHMM 1 would be adequate. If fl and ~k were known 

parameters rather than estimates, then the variance of 
~ k  would be a 2. It is clear from Goodman  and Haber- 
man (1990) that the correct variance of '~ ik  would be a 
much more complicated expression. For simplicity, let us 
regard ~ i k  as being "near zero" if it differs from zero by 
less than one standard deviation, i.e., if [~ik[ < ff//~k" Sub- 

stituting the SHMM 2 residual mean square as an esti- 
mate of a 2, the i th environment  has "near zero" secondary 

effect if [c~i2[ < 6]/6~/183.7 =0.142. (If the pooled within 
cell error estimate s 2 was available, we would use s / ~ n  to 
estimate a.) Thus, as a first attempt, we will try the follow- 
ing groups. 
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Fig. 3A-D.  Plots of SHMM~ indepen- 
dently fitted to data from subsets of loca- 
tions: A Group I (locations 3, 4, 5, 7, 10); 
B Group 2 (locations 1, 2, 8); C Group 3 a 
(locations 6, 9, 11, 12); D Group 3c (loca- 
tions 6 and 13) 

Table 3. SHMM anovas of location groups 1, 2 and 3 

Source of d f  ~ Sum of Mean P value b 
variation squares square 

SC test SC/SM 

Group 1 (Locations 3, 4, 5, 7, 10) 

Primary effects 11.75 120 416 t0249 <0.0001 <0.0001 
Secondary effects 5.24 1 173 224 0.4401 0.4817 
'Tertiary effects 1.82 386 212 0.1455 0.1517 
Remainder 0.193 2 9 - - 
SHMM 1 residuals 7.25 1 561 215 - - 

Group 2 (Locations 1, 2, 8) 

Primary effects 8.15 71 624 8 786 0.0013 0.0013 
Secondary effects 2.60 1 061 408 0.9849 0.9878 
Remainder 0.245 659 2 687 - 
SHMMx residuals 2.85 1 721 604 - - 

Group 3 (Locations 6, 9, 11, 12, 13) 

Primary effects 11.75 64 889 5 523 0.0037 0.0037 
Secondary effects 5.24 9 576 1 829 0.0033 0.0055 
Tertiary effects 1.82 384 211 0.3350 0.3444 
Remainder 0.193 9 49 - - 
SHMM z residuals 2.02 343 195 - - 
SHMM~ residuals 7.25 9 970 1 375 - - 

" d f  are computed by formulas developed by Seyedsadr and 
Cornelius (1991 a) to approximate the expectations of the S S  

when the data are standard normal deviates 
b For description of the SC and SC/SM tests, see text 

Group  1 : 

Group  2: 

Group  3: 

Locat ions 3, 4, 5, 7, 10 (secondary effects 
near zero); 

Locat ions 1, 2, 8 (secondary effects 
positive); 

Locat ions 6, 9, 11, 12, 13 (secondary effects 
negative). 

I t  is clear from the anova  of G r o u p  1 (Table 3) that 
S H M M  1 gives an adequate  fit for this group. In Group  2, 
no evidence for significant secondary effects was found, 
and the mean square for this was 408. The large mean 
square for remainder  after secondary effects of 2687 
(which is due only to ter t iary effects since S H M M  3 will fit 
the da ta  on three locations exactly) is somewhat  discon- 
certing, but  the sum of squares is only 659 and, when 
pooled with the secondary effects, gives a S H M M  1 resid- 
ual mean square of 604, less than our target  value of 
s~=678.  Apparently,  we can also regard SHMM1 as 
satisfactory for this group. 

S H M M  1 fitted to G r o u p  1 gives a graph (Fig. 3A) 
very similar to the configuration of pr imary  effects in the 
por t ion of Fig. i that  contains these locations (to the 
right of the point  of concurrence), which should be ex- 
pected since this is the group that  had secondary effects 
close to zero in the overall  S H M M 2 .  The fitted S H M M  t 
in Group  2 (Fig. 3 B) has the same rank order of cultivars 
as in G r o u p  1. The two groups differ primari ly in the 
posi t ioning of the regression lines for cultivars 2 and 4 
relative to one another  and to the high-yielding cultivar 1 
and the low-yielding cultivar 3. Cultivars 2 and 4 are 
essentially alike in locat ion Group  1, but  cultivar 2 seems 
to be distinctly the better of the two in Group  2. The 
equivalence of rank order  of cultivars in these two loca- 
t ion groups suggests that  they collectively form one 
group in which there is genotypic separability,  but  a 
mathematical  representat ion of it as such requires some 
opera tor  other than the multiplicative operator .  

In Group  3, the SC and SC/SM tests are significant 
for scondary effects, and the mean square for these effects 
is 1829, considerably greater than s~=678.  Its SHMM1 
residual mean square is also quite unacceptable.  Clearly, 



Table 4. SHMM anovas of location subgroups from group 3 

Source of d f  " Sum of Mean P value b 
variation squares square 

SC test SC/SM 

Group 3A (Locations 6, 9, 11, 12) 

Primary effects 10.03 25 772 2 570 0.0001 0.0001 
Secondary effects 3.96 556 140 0.9418 0.9528 
Remainder 1.01 359 356 - - 
SHMM~ residuals 4.97 915 184 - - 

Group 3 B (Locations 9, 11, 12) 

Primary effects 8.15 18 294 2 244 0.0007 0.0007 
Secoandary effects 2.60 246 94 0.9617 0.9676 
Remainder 0.245 120 488 - - 
SHMM 1 residuals 2.85 365 128 - - 

Group 3 C (Locations 6, 13) 

Primary effects 6.00 18 396 3 068 0.0202 0.0202 
Remainder 1.00 67 67 - - 

a d f  are computed by formulas developed by Seyedsadr and 
Cornelius (1991 a) to approximate the expectations of the S S  
when the data are standard normal deviates 
b For description of the SC and SC/SM tests, see text 

Group 3 needs further subdivision. We will consider two 
approaches: 

1) Trim the group of locations based on the original 
secondary effect estimates obtained when SHMM2 
was fitted to the entire data set; 

2) choose a subdivision based on estimated effects when 
S H M M  2 is fitted to Group 3 alone. 

Pursuing the first approach, let us delete the location 
with the most extreme secondary effect, i.e., location 13 
(c~z=-0.563) ,  giving Group 3a:  locations 6, 9, 11, 12. 
The anova of this subgroup (Table 4) indicates that 
SHMMx gives a good fit to the data, but the fitted 
S H M M  I (Fig. 3 C) shows location 6 to be to the right and 
locations 9, 11 and 12 to the left of the point of concur- 
rence. Thus, the fitted SHMM1 displays crossover inter- 
action. Note, however, that all cultivar differences in loca- 
tion 6 are small and possibly insignificant, giving this 
location a potential capability of being "played as a wild 
card" in selecting location subsets. 

Pursuing the second approach, the S H M M  2 primary 
and secondary effects in Group 3 are: 

Location ~a ~2 

13 0.752 --0.636 
6 0.135 --0.096 
9 --0.088 --0.041 

11 --0.282 --0.286 
12 --0.573 --0.709 
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The secondary effects are all negative, but the primary 
effects include both positive and negative values. Let us 
split this group into: 

Group 3b: locations 9, 11, 12 (primary effects negative); 
Group 3 c: locations 6, 13 (primary effects positive). 

Group 3 b is the same as would be obtained by removing 
location 6 from Group 3 a previously analyzed. Anovas 
of Groups 3b and c (Table 4) clearly indicate that 
S H M M  1 is a satisfactory model for each of these sub- 
groups. Graphical display of the fitted SHMM1 for 
Group 3 b (not shown) gives a configuration very similar 
to the portion of Fig. 3 C (Group 3 a) to the left of the 
point  of  concurrence. Eor Group 3 c the fitted S H M M  1 is 
shown as Fig. 3 D. Locations 6 and 13 actually have the 
same observed ranking of cultivars in the raw data; thus, 
it is reasonable that they should group together. 

A more complicated example 

Data from an international maize (Zea  rnays L.) cultivar 
trial (EVT 16B) (Table 5) with 20 experimental sites and 
nine cultivars provide an example with a more complicat- 
ed pattern of interaction. To facilitate comparison with 
SHMMl-est imated yields in subsets given later (Table 7), 
we have arranged the data in Table 5 by subsets of sites 
that were eventually obtained. Data  are means of four 
replications, and the pooled error mean square is 602 847 
(150 712 on a cell-mean basis) with 480 df. Analysis of 
these data revealed that at least three multiplicative terms 
would be necessary to adequately model the response 
pattern in the entire data set (FGm and F R tests indicated 
a need for three multiplicative terms; F 1 showed signifi- 
cance for six terms). We chose to use S H M M  3 as a start- 
ing point for subsetting the data. The S H M M  3 residual 
mean square among cells was 224 366. The steps by 
which we obtained subsets of sites with genotypic separa- 
bility are summarized in Table 6. The first subdivision 
was made on the basis of S H M M  3 tertiary effects, the 
intention being to obtain subsets in which S H M M  2 
would give an adequate fit. This was not entirely success- 
ful, but subsequent subdivisions did isolate groups with 
genotypic separability. 

By the S C  and F 1 tests, Group 1 still required SHMMa 
for an adequate model. The fitted S H M M  3 had sec- 
ondary effects of sites that were all of the same sign, but 
some primary effects were positive and others negative. It 
seems expedient in such a circumstance to split the group 
into subsets based on sign of the primary effects. Doing 
so led immediately to one subset of three sites (Group 1 a, 
see Table 6), which was satisfactory. SHMM2 was ade- 
quate for the remaining sites in Group I and dichoto- 
mous subdivision on the basis of secondary effects suc- 
cessfully split them into two satisfactory subgroups. 
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Table 5. Yields (kg ha-  1) of nine maize cultivars at 20 sites 

Site Cultivar Mean 

1 2 3 4 5 6 7 8 9 

7 2382 2515 3529 2998 3556 3949 3537 3088 3061 3229 
10 3100 2972 2785 2843 2688 3024 2889 3353 2274 2936 
19 1632 2282 3059 2233 3073 3011 3211 2634 2735 2652 

6 6437 6036 6459 6678 6882 6916 6745 4986 5610 6305 
14 5849 5932 5886 6439 6359 6380 5820 5522 6282 6052 

4 4566 4963 5136 6030 5831 5980 4342 4442 5781 5230 
5 4380 5201 4178 5672 5414 5591 4277 4476 5407 4955 
9 4647 4714 5448 4864 5588 5603 4318 4001 5553 4971 

13 6721 5627 6294 7332 7174 7262 5544 4117 6920 6332 
16 5010 5196 5455 6351 6070 5730 5013 4551 5278 5406 

1 3622 3426 3446 3720 3165 4116 3354 4529 3136 3613 

3 5554 4937 5117 4542 6173 5205 5389 5248 3780 5105 

15 4601 4126 4537 6331 6328 5961 4346 4321 4889 5049 
17 4415 4211 4749 5161 5454 5807 3862 5243 4989 4877 
20 4587 4396 5018 4988 5776 5088 4056 4806 4822 4838 

8 6011 5278 4731 2516 2732 2983 4206 4484 3309 4028 

2 3728 3919 4082 4539 4079 4878 4767 3393 4500 4209 
18 3344 4515 4295 5618 4498 5333 5276 2940 5244 4552 

11 4433 4349 4526 7117 5995 6150 5052 3713 6430 5307 
12 6873 7571 7727 8385 8106 7637 7444 5816 8091 7516 

Mean 4617 4603 4823 5218 5247 5330 4672 4283 4930 4858 

Group  2 also still required S H M M  3 for an adequate  
model  according to the F 1 test and S H M M  z according to 
F c m .  An at tempt  to subdivide it on the basis of S H M M  3 
tert iary effects gave a three-site group (2b), which was 
definitely unsatisfactory (second effects significant by 
both F1 and FGm tests), and a two-site group (2a), which 
might have been considered marginal ly satisfactory. [The 
SHMM~ residual mean square was 265 025, which looks 
uncomfortably large compared  to the SHMM3 residual 
mean square from the entire da ta  set and the pooled error 
mean square (on a cell-mean basis), but  none of the pre- 
viously described tests for the secondary effects against  
the pooled error  were significant. The SC and SC/SM 
tests of secondary effects do not  exist for a subgroup of 
only two sites.] However,  a second at tempt  to subdivide 
Group  2, this time using S H M M  a secondary effects as the 
criterion, led to a satisfactory group of three sites (2 d). 

The other two sites (1 and 3) in G r o u p  2 are unsatisfacto- 
ry as a group of two and will be left as ungrouped sites. 

In Group  3, S H M M  2 appeared  to be satisfactory, but  
S H M M  3 apparent ly  was needed for a subset of four sites 
(3 b) obtained after one subdivision, which had split one 
site off from the other four. Two successive subdivisions, 
each of which split one site away from the remaining sites, 
finally gave the satisfactory two-site group 3f. At this 
point  it seemed reasonable to investigate whether we 
could find any satisfactory grouping of the three sites (8, 

11 and 12) from Group  3, which had been separated out  
one at a time in previous steps. Doing so led to Group  3 g 
(sites 11 and 12) as a marginal ly satisfactory group of two. 
The S H M M  1 residual mean square in this subset was 
267 321, really no better than Group  2a, which was dis- 
carded in favor of an alternative subgrouping of Group  2. 
However, it appears  doubtful  if any better  subgrouping of 
Group  3 can be found than Groups  3 f, 3 g, and site 8 as 
an ungrouped site, except possibly to let sites 11 and 12 
also be ungrouped. 

Thus, the final groupings consisted of one group of 
five sites (1 d), two groups of three sites each (1 a and 2d), 
three groups of two sites each (1 c, 3 f, 3 g) and three sites 
(1, 3, 8) which were not  found to satisfactorily group with 
other sites. S H M M  1 predicted yields in the locat ion sub- 
sets are shown in Table 7. 

Validation of  the EVT 16 B example 

To validate the procedure,  we investigated the extent to 
which genotypic crossover (i.e., rank change) interactions 
still exist in the raw cell means within the groups of sites 
finally chosen. The SH M M l-e s t ima t e d  yields within 
these groups, of course, predict  no crossover interactions 
whatever, and any which existed in the original da ta  have 
been "smoothed-ou t ' ,  i.e., regarded as noise, in fitting 
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Table 6. Summary of steps by which subsets of environments with genotypic separability were identified in the EVT16B data set 

Subgroups Sites Criterion Is SHMM 1 adequate? 

t {4, 5, 6, 7, 9, 10, 13, 14, 16, 19} 
2 {1, 3, 15, 17, 20} 
3 {2, 8, l t ,  12, 18} 

l a {7, 10, 19} 
l b {4, 5, 6, 9, 13, 14, 16} 

1 c {6, 14} 
l d {4, 5, 9, 13, 16} 

2a {1, 17} 
2b {3, 15, 20} 

2c {l, 3} 
2d {15, 17, 20} 

3a {8} 
3b {2, 11, 12, 18} 

3c {12} 
3d {2, 11, 18} 

3e {11} 
3f {2, 18} 

3a {8} 
3g {11, 12} 

First subdivision (SHMM 3) a 
Tertiary effects near zero No 
Tertiary effects negative No 
Tertiary effects positive No 

Subdividing group 1 (SHMM3) 
Primary effects negative Yes 
Primary effects positive No 

Subdividing group 1 b (SHMM 2) 
Secondary effects negative Yes 
Secondary effects positive Yes 

Subdividing group 2 (SHMMa) 
Tertiary effects positive No (?) 
Tertiary effects negative No 

Subdividing group 2 (second attempt, SHMM3) 
Secondary effects positive No 
Secondary effects negative Yes 

Subdividing group 3 (SHMM2) 
Secondary effects large, positive 
Secondary effects small, negative No 

Subdividing group 3 b (SHMM3) 
Primary effects negative 
Primary effects positive No 

Subdividing group 3 d (SHMM2) 
Secondary effects negative 
Secondary effects positive Yes 

Subdividing {8, l l ,  12} (regrouped, SHMM2) 
Secondary effects large 
Secondary effects small Yes (?) 

a Model shown in parenthesis is the model needed to adequately model the group to be subdivided 

S H M M  1 to the subsets. A total o f r ( r -  1) c(c- 1)/4 inter- 
action contrasts of the form Ylj. - 37vj. - Y~j'. + Yv;., i.e., 
2 x 2 contrasts, for i < i' and j  <j' exist in a r x c table. Any 
of these is statistically significant at P < c~ by an ordinary 
t-test if its absolute value exceeds t,(r ~ where f,  s 2 
and n are as previously defined. For  the EVT 16B data 
this critical value is 1526 for c~=0.05. Out of the 6840 
2 x 2 interaction contrasts in the EVT16B data, 2728 
(39.88%) of them are crossover interactions (i.e., actually 
show genotypic rank change in their observed pattern) 
and 1042 (15.23% of all 2 x 2 contrasts; 38.20% of the 
crossover interactions) exceed the critical value 1526. 

In the subsets finally chosen, there are 684 2 x 2 con- 
trasts, 158 (23.10%) of them being crossover interactions, 
of which 18 (2.63% of all 2 x 2  contrasts in subsets; 
11.39% of the crossover interactions in subsets) exceed 
the critical value 1526. Clearly, the percentage of interac- 
tions in subsets which are crossover interactions is signif- 
icantly less than for the overall data set, and the percent- 
age of those interactions which are statistically significant 
is dramatically less. Moreover, if a random 20 x 9 table 
with no true genotypic differences apart from that which 

derives from random error was randomly subpartitioned 
into subsets of rows of the sizes obtained here, we would 
expect 5% of the 2 x 2 interactions to be "significant" by 
a 0.05-level t-test. We would further expect roughly half 
of those interactions to be crossover and half to be non- 
crossover interactions. Thus, 2.63% of the interactions 
appearing as "significant" crossover interactions is close 
to the expected 2.5%. 

Still more dramatic is a comparison of the magnitude 
of the crossover interactions. For  those with sites in dif- 
ferent subsets ("between subsets") they range from - 5372 
to 6180 with a mean absolute value of 1503. Thus, their 
mean absolute value was almost as large as the critical 
value 1526. The within-subset crossover interactions, i.e., 
those which "slipped through the cracks" in our proce- 
dure, ranged from - 2 7 0 0  to 2092 with a mean absolute 
value of only 878. For  those judged significant, the mean 
absolute value was 2463 between subsets and 1862 within 
subsets. 

Two other interesting observations are that 8 of the 18 
"significant" crossover interactions in subsets involve site 5 
in Group 1 d, and 45 of the 158 crossover interactions in 
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Table 7 (continued) 

Site Cultivar 

1 2 3 4 5 6 7 8 9 

Site group 3 g 

11 4387 4637 4836 7006 6069 5971 5089 3393 6377 
12 6948 7103 7226 8565 7986 7926 7382 6335 8177 

Mean 5667 5870 6031 7786 7026 6949 6236 4864 7277 
Raw mean 5653 5960 6127 7751 7050 6893 6248 4764 7260 
Rank a 8 7 6 1 3 4 5 9 2 

a Rank order (high to low) of SHMM 1 estimated yields 
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subsets involve Site 10 in Group 1 a. Only 3 of these 
crossover interactions involving Site 10 exceed the criti- 
cal value 1526. Site 10, with many of its cultivar differ- 
ences small, seems to be behaving somewhat like a "wild 
card" in Group I a. 

Baker (1988, 1990) used the method of Azzalini and 
Cox (1984) to evaluate 2 x 2 subtables for the presence of 
crossover interactions. By the Azzalini-Cox test, signifi- 
cant crossover interaction is indicated if the absolute 
value of the difference between the two cultivars exceeds 
a critical value in each of the two environments and the 
cultivar differences in the two environments are of oppo- 
site sign. The critical values may differ if different esti- 
mates of the standard errors are used. Using the pooled 
error as the error estimate for all environments, the 0.05 
level critical value for the Azzalini-Cox test is 1586. There 
were 43 significant crossover interactions by this test, 
none of which involves sites from the same subset. 

The Azzalini-Cox test is clearly intended to have an 
experiment-wise error rate of c~, and its power to detect 
real crossover interactions will decrease as the dimen- 
sions (r x c) of the two-way table of environments and 
cultivars increases. If we, instead, substitute a 0.05-level 
t-test (comparison-wise error rate of ~ = 0.05), the critical 
value for a cultivar difference within a site is 1079. Using 
this critical value, 187 significant crossover interactions 
were found. Again, none of them were within a subset. 

We can also define an "interaction-wise" Type I error 
rate, i.e., error rate per 2 x 2 table tested for crossover 
interaction. If the critical value for a simple cultivar differ- 
ence is C = t o ~ where t o is a value of Student's t 
such that P [t > to] = 0, then the probability of declaring a 
crossover interaction to exist when there is, in fact, no 
cultivar difference in either environment (such is the null 
hypothesis in the Azzalini-Cox test), is 2 02 [expression (3) 
of Azzalini and Cox]. Putting 2 0 2 =  ~ gives 0=(C~/2) U2. 
For c~=0.05, we have 0=0.1581, to.1581=l.0033 for 
480 df,  and C = 551. Using this critical value, 646 signifi- 
cant crossover interactions were found. Only 9 of them 
were within subsets, all of them in subset 1 d (7 of these 
involve site 9 and, of these 7, 4 involved eultivars 3 

and 4). The mean absolute value of the 2 x 2 interaction 
contrasts was 1682 for these 9 within-site subtables and 
was 2600 for the 637 between-site subtables showing sig- 
nificance. The number of possible 2 x 2 subtables within 
subset l d is 360. Thus, 9 significant crossover inter- 
actions is only half the number expected in this subset 
under the null hypothesis (0.05 x 360= 18), and roughly 
one-fourth of the number expected within all subsets 
(0.05 x 684=34.2). We previously mentioned that the 
selected subsets contained 18 interactions with crossover 
pattern, which were significant by 0.05-level t-test of 2 x 2 
interaction contrasts. Of these, 12 failed to show simulta- 
neous significance of both within-site cultivar differences 
even by this liberal Azzalini-Cox-type test with a 0.05 
interaction-wise error rate. 

Concluding c o m m e n t s  

This analysis indicated that the shifted multiplicative 
model, with the aid of appropriate statistical procedures, 
can be quite effectively used to identify subsets of envi- 
ronments in which genotypic effects are separable. The 
method described is "exploratory" in that the investiga- 
tor explores the data as he makes decisions at each step. 
At some steps, if a decision made does not seem to lead 
to a useful result, an alternative decision may be explored. 
It is a "step-down" method in that it begins with the 
entire data set and seeks to subdivide it into subsets. 
These properties are as opposed to clustering methods 
where the computer does everything in a "step-up" direc- 
tion, building first small clusters and proceeding to amal- 
gamate the small clusters into larger clusters truncating 
the process when the next amalgamation fails to produce 
a cluster that can be adequately modeled by S H M M  1 . 

Obviously, the subsets identified by the exploratory 
method described here are not unique since the result 
finally obtained depends on decisions made at earlier 
stages, and particularly on what subdivision was chosen 
at the initial stage. In practice, alternative decisions might 
be tried at the initial or later stages to observe what end 
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results are ultimately obtained. In  the process, the inves- 
tigator will learn much about the structure of his data. 

In further work, we will seek to develop clustering 
algorithms that can be implemented on a computer with- 
out the need for decisions by the investigator at inter- 
mediate steps. 
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